LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface morphology effects on clathrate hydrate wettability.

Photo from wikipedia

HYPOTHESIS Clathrate hydrates preferentially form at interfaces; hence, wetting properties play an important role in their formation, growth, and agglomeration. Experimental evidence suggests that the hydrate preparation process can strongly… Click to show full abstract

HYPOTHESIS Clathrate hydrates preferentially form at interfaces; hence, wetting properties play an important role in their formation, growth, and agglomeration. Experimental evidence suggests that the hydrate preparation process can strongly affect contact angle measurements, leading to the different results reported in the literature. These differences hamper technological progress. We hypothesize that changes in hydrate surface morphologies are responsible for the wide variation of contact angles reported in the literature. EXPERIMENTS Experimental testing of our hypothesis is problematic due to the preparation history of hydrates on their surface properties, and the difficulties in advanced surface characterization. Thus, we employ molecular dynamics simulations, which allow us to systematically change the interfacial features and the system composition. Implementing advanced algorithms, we quantify fundamental thermodynamic properties to validate our observations. FINDINGS We achieve excellent agreement with experimental observations for both atomically smooth and rough hydrate surfaces. Our results suggest that contact line pinning forces, enhanced by surface heterogeneity, are accountable for altering water contact angles, thus explaining the differences among reported experimental data. Our analysis and molecular level insights help interpret adhesion force measurements and yield a better understanding of the agglomeration between hydrate particles, providing a microscopic tool for advancing flow assurance applications.

Keywords: morphology effects; surface morphology; effects clathrate; hydrate wettability; surface; clathrate hydrate

Journal Title: Journal of colloid and interface science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.