LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistically Improved Antifouling Efficiency of a Bioinspired Self-renewing Interface via a Borneol/ Boron Acrylate Polymer.

Photo from wikipedia

Underwater facilities are often perplexed by severe and ubiquitous biofouling. The widely applied commercial antifouling materials still have several challenges in static applications. Herein, a polymer containing isoborneol and borane… Click to show full abstract

Underwater facilities are often perplexed by severe and ubiquitous biofouling. The widely applied commercial antifouling materials still have several challenges in static applications. Herein, a polymer containing isoborneol and borane (PBABs), the borneol derivative structure and grafted pyridine-triphenylborane (PTPB) as antifouling groups were prepared by radical polymerization. PBABs showed high antibacterial rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of up to 95.1% and 81.1%, respectively, confirming superior antibacterial adhesion propertys. More importantly, PBABs effectively reduced the expression of mussel adhesion protein, indicating superior antifouling propertys, resulting from the synergistic effect of multiple antifouling functional groups on the material's surface. Therefore, the PBABs have been evaluated as noncytotoxic, low-cost, easily synthesized, and mass-produced, which demonstrates their great potential for actual marine applications.

Keywords: interface; antifouling efficiency; improved antifouling; efficiency bioinspired; synergistically improved; bioinspired self

Journal Title: Journal of colloid and interface science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.