HYPOTHESIS We describe the possibility of using the same block copolymer carriers prepared by PISA for in situ drug encapsulation or drug conjugation. EXPERIMENTS Block copolymers containing poly((ethylene glycol) methacrylate)-co-poly(pentafluorophenyl… Click to show full abstract
HYPOTHESIS We describe the possibility of using the same block copolymer carriers prepared by PISA for in situ drug encapsulation or drug conjugation. EXPERIMENTS Block copolymers containing poly((ethylene glycol) methacrylate)-co-poly(pentafluorophenyl methacrylate)-b-poly(hydroxypropyl methacrylate) (P((PEGMA-co-PFBMA)-b-PHPMA)) were synthesized at 10 wt% using PISA. The first approach involved in situ Doxorubicin (DOX) loading during PISA, while the second exhibited surface functionalization of PISA-made vesicles with dual drug therapies, N-acetyl cysteine (NAC) and DOX using para-fluoro-thiol reaction (PFTR) and carbodiimide chemistry, respectively. Cytotoxicity, cell uptake, and cell apoptosis were assessed on MDA-MB-231 cell lines. FINDINGS P((PEGMA-co-PFBMA)-b-PHPMA) nanocarriers were prepared, showing size and shape transformations from spheres, cylinders to raspberry-forming vesicles. DOX was readily loaded into NPs during PISA with relatively high encapsulation efficiency of 70 %, whereas the plain PISA-made vesicles could be functionalized with NAC and DOX at high yields. DOX-free NPs showed biocompatibility, whilst DOX-conjugated NPs imparted a concentration-dependent cytotoxicity, as well as an enhanced cell uptake compared to free DOX. The results demonstrated that the same PISA-derived self-assemblies enabled either in situ drug encapsulation, or post-polymerization surface engineering with useful functionalities upon tuning the macro-CTA block, thus holding promises for future drug delivery and biomedical applications.
               
Click one of the above tabs to view related content.