LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unveiling the promotion of intermediates transport kinetics on the N/S co-doping 3D structure titanium carbide aerogel for high-performance supercapacitors.

Photo by jordanmcdonald from unsplash

Two-dimensional (2D) transition metal carbides (MXene) have shown great advantages as electrode materials in the new generation of energy storage, especially in supercapacitors. However, the inherent low specific capacitance and… Click to show full abstract

Two-dimensional (2D) transition metal carbides (MXene) have shown great advantages as electrode materials in the new generation of energy storage, especially in supercapacitors. However, the inherent low specific capacitance and restacking layers of nanosheets that occur during electrode preparation further reduce the electrochemical performance of the materials. Based on this, we design a N, S co-doping electrode with a three-dimensional (3D) structure, which not only improves the specific capacitance through fundamentally modifying the electronic structure of the electrode materials, but also effectively improves the rate performance of the electrode by preventing the restacking of 2D materials. The N, S co-doping 3D architecture Ti3C2Tx electrode (TC/NS-3D) exhibits an excellent capacitance value of 440 F g-1 at 5 mV s-1 and 64% capacitance retention rate at a high scan rate of 1000 mV s-1 in 3 mol L-1 H2SO4 electrolyte. The TC/NS-3D electrode also shows excellent capacitance retention of 97.2% after the 10,000 cycles stability test. The density functional theory (DFT) analysis reveals the enhanced performance is attributed to accelerated intermediates transport kinetics promoted by 3D structure engineering and N, S co-doping for Ti3C2Tx. This study is promising in designing heteroatomic doping 3D structure MXene-based materials for electrochemical energy storage systems.

Keywords: doping structure; performance; structure; capacitance; intermediates transport; transport kinetics

Journal Title: Journal of colloid and interface science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.