Abstract Lithium ion secondary battery is developing rapidly because of its good electrochemical performance and environmental friendly since its marketization. With the booming of lithium ion secondary battery industry, the… Click to show full abstract
Abstract Lithium ion secondary battery is developing rapidly because of its good electrochemical performance and environmental friendly since its marketization. With the booming of lithium ion secondary battery industry, the environmental issues will become increasingly evident because of production, transportation and recycling. With more and more attention put on global warming and lithium ion secondary battery industry convergence became active, concurrent and meaningful assessment on its carbon footprint is urgent. The research aims to establish a methodology for lithium ion secondary battery industry. We take life cycle assessment as our method and we set lithium ion secondary battery industry chains as our study object. Two case studies which contain three lithium ion secondary industry chains were conducted in order to verify this methodology and find out factors that influence carbon footprint mostly in the life cycle of lithium ion secondary battery industry. Through case studies, we confirm the availability of the methodology, and get carbon footprints of the three industry lithium ion secondary battery chains which are 6053.01tCO 2eq , 16003.27tCO 2eq and 2211.10tCO 2eq . Through comparison between the three battery industry chains, we get the conclusion that economies of scale could contribute to the reduction of carbon footprint indirectly and technical improvements may also be helpful. Electric energy consumption is the main factor of lithium ion battery production companies in generating of carbon footprint. This may relate to the main source of China's electric power which is thermal power generation.
               
Click one of the above tabs to view related content.