Abstract The main aim of this study is to develop a computer-aided material selection tool that supports the designer in the selection of the most suitable carbon fiber-reinforced composite configuration… Click to show full abstract
Abstract The main aim of this study is to develop a computer-aided material selection tool that supports the designer in the selection of the most suitable carbon fiber-reinforced composite configuration (orientations, the number of plies, material type) for aircraft structures. The selection procedure is based on technical, economic and environmental performance objectives for a given design, in a multidisciplinary and multi-objective optimization scenario. Economic and environmental performance evaluation is based on an integrated Life Cycle Assessment (LCA)/Life Cycle Costing (LCC) model. Technical performance evaluation is done using Hypermesh-Optistruct® solver. Direct multi-search (DMS) solver is used for the optimization framework. A cargo aircraft elevator design is optimized using the proposed material selection tool. Results show that the material selection tool is a suitable guide for reducing weight during the early phases of design and promoting sustainable development in the aircraft industry.
               
Click one of the above tabs to view related content.