LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalytic ozonation of high concentrations of catechol over TiO2@Fe3O4 magnetic core-shell nanocatalyst: Optimization, toxicity and degradation pathway studies

Photo by ninjason from unsplash

Abstract TiO2@Fe3O4 magnetic core-shell nanocomposite was coupled with ozone for catalytic ozonation of catechol in a batch environment. The catalyst features were characterized using FE-SEM, EDS, XRD, VSM and TEM… Click to show full abstract

Abstract TiO2@Fe3O4 magnetic core-shell nanocomposite was coupled with ozone for catalytic ozonation of catechol in a batch environment. The catalyst features were characterized using FE-SEM, EDS, XRD, VSM and TEM techniques. The effect of several operating parameters including solution pH, catalyst loading, initial catechol concentrations and scavengers was assessed in parallel with a single ozonation process (SOP). Possible mechanism, intermediates identification and pathway of degradation were also performed. In all experiments, catalytic ozonation showed better performance, compared to SOP in the degradation and mineralization of catechol. The experimental data were in good agreement with pseudo-first-order kinetic model. Over 99% of catechol were removed by TiO2@Fe3O4/O3 system under optimum conditions within 60 min reaction and the mineralization degree was obtained >91%. The entire degradation of 50, 100 and 250 mg/L concentrations was obtained within 30 min treatment by TiO2@Fe3O4/O3. The bioassay and biodegradability tests indicated that the organic matters were removed effectively by TiO2@Fe3O4/O3 process and the biodegradability indices was improved as well. Particularly, hydroxyl radicals were dominant species during catechol degradation in the catalytic ozonation process. After ten consecutive use cycles, the degradation efficiency was reduced slightly (

Keywords: magnetic core; degradation; tio2 fe3o4; fe3o4 magnetic; catalytic ozonation

Journal Title: Journal of Cleaner Production
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.