LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus

Photo from wikipedia

Abstract Challenge of energy will be increase in whole world by augmenting relevance of industry with fossil energy. According to this fact, renewable energies become popular in recent years. Employing… Click to show full abstract

Abstract Challenge of energy will be increase in whole world by augmenting relevance of industry with fossil energy. According to this fact, renewable energies become popular in recent years. Employing nanofluids can help scientists to improve the performance of such systems. The impact of iron oxide–water nanofluid, as working fluid, was employed to evaluate entropy generation in an enclosure in existence of magnetic force. To analyze the performance of heating unit, both view of first and second law of thermodynamic should be involved. In current research, environment-friendly magnetic fluid namely Fe3O4-water ferrofluid has been studied which is useful in magnetic nanostructured materials have been found to be very efficient in wastewater decontamination. More exactly, the behavior of magnetic nanofluid through a porous space with innovative computational method is displayed. To involving porous media, non-Darcy approach was considered. Outcomes are obtained via Control volume based finite element method (CVFEM) to portray the impacts of Hartmann, Rayleigh numbers and permeability. Results display that dispersing nanoparticles leads to augment in thermal performance and decrease in entropy generation. As permeability enhances, Bejan number improves. As Lorentz forces augments, impact of adding nanoparticles reduces and exergy loss detracts. Dispersing nanoparticles are more beneficial in lower values of permeability.

Keywords: water; water ferrofluid; lorentz forces; entropy; fe3o4 water

Journal Title: Journal of Cleaner Production
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.