LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulation study of biomethane liquefaction followed by biogas upgrading using an imidazolium-based cationic ionic liquid

Photo from wikipedia

Abstract To satisfy the ever-increasing global energy demand, biomethane is considered a promising sustainable and renewable energy source. Biomethane can be transported either in the gaseous phase (through pipelines, over… Click to show full abstract

Abstract To satisfy the ever-increasing global energy demand, biomethane is considered a promising sustainable and renewable energy source. Biomethane can be transported either in the gaseous phase (through pipelines, over a small distance) or in the liquid phase (through shipping, over a long distance). For transportation over long distances, liquefaction is one of the most economic and feasible approaches so far. However, biomethane is obtained as a result of biogas upgrading, i.e., CO2 removal from biogas. Conventionally, CO2 is removed through amine-based absorption, which consumes large amounts of energy to regenerate the amine-based solvent. Liquefaction of methane (obtained either from fossil-based or renewable resources) has also been recognized as an energy-intensive process. Hence, the major issue associated with biogas upgrading and subsequent biomethane liquefaction is their high energy consumption, which ultimately affords a cost-intensive process. In this context, we propose a simulation based an economical and energy efficient process for biomethane liquefaction following biogas upgrading using an ionic liquid (1-butyl–3–methylimidazolium hexafluoro phosphate [Bmim][PF6]). As such, biogas can be upgraded at an energy expense of 1.1048 kWh/kmol, while 11.26 kWh/kmol of energy is used for biomethane liquefaction. The specific total annualized cost for the proposed integrated process was calculated as $519.3/kg-biogas.

Keywords: biomethane; upgrading using; biomethane liquefaction; biogas upgrading; energy

Journal Title: Journal of Cleaner Production
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.