Abstract The objective of this work was to examine opportunities for reducing the overall cost of lignocellulose hydrolysis to fermentable sugars. Primary sludge (PS), a negative cost lignocellulosic feedstock, was… Click to show full abstract
Abstract The objective of this work was to examine opportunities for reducing the overall cost of lignocellulose hydrolysis to fermentable sugars. Primary sludge (PS), a negative cost lignocellulosic feedstock, was hydrolyzed sludge using a commercial cellulase preparation (CellicĀ® CTec2) in presence of non-ionic surfactants. Polyethylene glycol (PEG) 4000 facilitated the highest hydrolysis yield of 74.4% which represented a 2-fold increase over the control without surfactant. Response surface methodological analysis at four variables (hydrolysis time, solids, enzyme, and surfactant loadings) revealed that enzymatic hydrolysis was significantly enhanced by the interactive effect of all factors with solids and enzyme loadings as the most significant parameters (p
               
Click one of the above tabs to view related content.