LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy, exergy and exergoeconomic optimization of a cogeneration system integrated with parabolic trough collector-wind turbine with desalination

Photo from wikipedia

Abstract This paper brings together the benefits of a membrane-thermal desalination plant with an integrated system containing parabolic trough collectors and wind turbines in collaboration with the electrical network to… Click to show full abstract

Abstract This paper brings together the benefits of a membrane-thermal desalination plant with an integrated system containing parabolic trough collectors and wind turbines in collaboration with the electrical network to produce power and freshwater. This proposed cogeneration system was employed for providing power and freshwater in Chabahar in Iran by three types of desalination system consist of the Reverse Osmosis (RO), Multi-effect distillation (MED), and Thermal Vapor Compression (TVC). Through this novel system, the heat generated in the parabolic trough collector is transferred into the organic Rankine cycle (ORC) to produce power. So, the generated power of the organic Rankine cycle and an auxiliary wind turbine can employ by the Reverse Osmosis unit, and the surplus amount of the electricity can sell to the electrical network. This configuration is enabled to increase the stability of the system, and it ultimately reduces the cost of water production by 23%. Besides, the integration of Multi-effect distillation (MED) and Thermal Vapor Compression (TVC) systems enjoys the rejected waste heat from the condenser to increase the produced freshwater. The obtained results from exergy analysis demonstrated that the exergy destruction of the solar collectors and wind turbines contributed by 39.5% and 22.2%, respectively. The results of multi-objective particle swarm optimization reveal that the exergy efficiency and the cost of freshwater production reach to 26.2% and 3.08 US$/m3, each. The environmental assessments of this system demonstrate that this hybrid system prevents the amount of 52164 tons of CO2 emission per year.

Keywords: system; trough collector; desalination; cogeneration system; parabolic trough; wind turbine

Journal Title: Journal of Cleaner Production
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.