LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Creating a harmonized time series of environmentally-extended input-output tables to assess the evolution of the US bioeconomy - A retrospective analysis of corn ethanol and soybean biodiesel

Photo from wikipedia

Abstract Expanding the domestic bioeconomy can help diversify the use of national resources and reduce emissions. Evaluating the sustainability of a growing bioeconomy, however, is inherently complex since it spans… Click to show full abstract

Abstract Expanding the domestic bioeconomy can help diversify the use of national resources and reduce emissions. Evaluating the sustainability of a growing bioeconomy, however, is inherently complex since it spans several sectors and supply chains. It requires a comprehensive, integrated analysis framework to assess the developments across the traditional sustainability dimensions. Further, the assessment of bioeconomy developments requires a robust baseline of historic data and trends. In this paper, we analyze the evolution of the biofuel portion of the US bioeconomy, focusing on two fuels that had an exponential growth in the last two decades: corn ethanol and soybean biodiesel. For this purpose, we created a novel time series of harmonized environmentally-extended input-output (EEIO) tables based on a publicly available model from the US Environmental Protection Agency and expanded its disaggregation to reflect the main supply chains of the biofuels sectors. The EEIO time series provides the historical evolution of these biofuels relative to the rest of the economy as well as on an energy-unit basis. We find that, except for energy use, the broader US economy declined in both resource intensity and most environmental impacts when normalized per one million dollars of gross domestic product. Deviating from this trend are freshwater ecotoxicity and human toxicity, mainly attributable to the expansion of commodity crops and the increase of domestic oil and gas extraction respectively. We also find that the biofuel industry's total socioeconomic, resource use and environmental impacts grew with their production increases over time. However, the industry's maturation and scale-up, combined with higher feedstock yields, contributed to a reduction of most impacts on an energy-unit basis over time.

Keywords: time series; evolution; time; corn ethanol; bioeconomy

Journal Title: Journal of Cleaner Production
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.