LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous removal of nitrate, copper and hexavalent chromium from water by aluminum-iron alloy particles.

Photo from wikipedia

Groundwater contamination is a worldwide concern and the development of new materials for groundwater remediation has been of great interest. This study investigated removal kinetics and mechanisms of nitrate, copper… Click to show full abstract

Groundwater contamination is a worldwide concern and the development of new materials for groundwater remediation has been of great interest. This study investigated removal kinetics and mechanisms of nitrate, copper ion and hexavalent chromium (20-50 mg L-1) by particles of Al-Fe alloy consisting of 20% Fe in batch reactors from a single KNO3, CuSO4, Cu(NO3)2, K2Cr2O7 and their mixed solutions. The effects of contaminant interactions and initial pH of the solution were examined and the alloy particles before and after reaction were characterized by X-ray diffraction spectrometer, scanning electron microscopy and X-ray photoelectron spectroscopy. The removal mechanisms were attributed to chemical reduction [Cu(II) to Cu, NO3- to NH3 and Cr(VI) to Cr(III)] and co-precipitation of Cr(III)-Al(III)-Fe(III) hydroxides/oxyhydroxides. Cu(II) enhanced the rates of NO3- and Cr(VI) reduction and Cr(VI) was an inhibitor for Cu(II) and NO3- reduction. This study demonstrates that Al-Fe alloy is of potential for groundwater remediation.

Keywords: nitrate copper; hexavalent chromium; alloy particles

Journal Title: Journal of contaminant hydrology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.