LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Including urinary output to define AKI enhances the performance of machine learning models to predict AKI at admission.

Photo from wikipedia

PURPOSE Acute kidney injury (AKI) is a prevalent and detrimental condition in intensive care unit patients. Most AKI predictive models only predict creatinine-triggered AKI (AKICr) and might underperform when predicting… Click to show full abstract

PURPOSE Acute kidney injury (AKI) is a prevalent and detrimental condition in intensive care unit patients. Most AKI predictive models only predict creatinine-triggered AKI (AKICr) and might underperform when predicting urine-output-triggered AKI (AKIUO). We aimed to describe how admission AKICr prediction models perform in all AKI patients. MATERIALS AND METHODS Three types of models were trained: 1) pAKIany, predicting AKI based on creatinine or urine output, 2) pAKIUO, predicting AKI based only on urine output, and 3) pAKICr, predicting AKI based only on creatinine. We compared model performance and predictive features. RESULTS The pAKIany models had the best overall performance (AUROC 0.673-0.716) and the most consistent performance across three patient cohorts grouped by type of AKI trigger (min AUROC of 0.636). The pAKICr models had fair performance in predicting AKICr (AUROCs 0.702-0.748) but poor performance predicting AKIUO (AUROCs 0.581-0.695). The predictive features for the pAKICr models and pAKIUO models were distinct, while top features for the pAKIany models were consistently a combination of those for the pAKICr and pAKIUO models. CONCLUSION Ignoring urine output in the outcome during model training resulted in models that are unlikely to predict AKIUO adequately and may miss a substantial proportion of patients in practice.

Keywords: urine output; admission; aki; output; performance; models predict

Journal Title: Journal of critical care
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.