LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolution of grain structure and recombination active dislocations in extraordinary tall conventional and high performance multi-crystalline silicon ingots

Photo from wikipedia

Abstract In this work one high performance multi-crystalline silicon ingot and one conventional multi-crystalline silicon ingot, each with an extraordinary ingot height of 710 mm, were replicated by the successive growth… Click to show full abstract

Abstract In this work one high performance multi-crystalline silicon ingot and one conventional multi-crystalline silicon ingot, each with an extraordinary ingot height of 710 mm, were replicated by the successive growth of eight G1 ingots to evaluate the potential advantage of extraordinary tall HPM ingots in industrial production. By analyzing different grain structure parameters like mean grain size, grain orientation and grain boundary type distribution as well as the recombination active dislocation area over the complete ingot height, it was observed that the material properties strongly differ in the initial state of growth for the two material types. However, at ingot heights above 350 mm, the difference has vanished and the grain structure properties for both materials appear similar. It is shown that the evolution of the grain structure in both material types can be explained by the same grain selection and grain boundary generation/annihilation mechanisms whereas the current grain structure determines which mechanisms are the most dominant at a specific ingot height. Since the grain structure directly influences the dislocation content in the silicon material, also the recombination active dislocation area becomes equal in high performance and conventional multi-crystalline silicon material at ingot heights above 350 mm. From these results it is concluded that the advantage of high performance silicon material is limited to the first grown 350 mm of the ingot.

Keywords: grain structure; multi crystalline; silicon; grain; high performance

Journal Title: Journal of Crystal Growth
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.