LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hall characterization of epitaxial GaSb and AlGaAsSb layers using p-n junctions on GaSb substrates

Photo from wikipedia

Abstract The Hall Van-der-Pauw method is widely used to assess the electrical properties of GaSb based semiconductor layers. Semi-insulating GaSb substrates are not available, and therefore, Hall structures are generally… Click to show full abstract

Abstract The Hall Van-der-Pauw method is widely used to assess the electrical properties of GaSb based semiconductor layers. Semi-insulating GaSb substrates are not available, and therefore, Hall structures are generally grown on semi-insulating GaAs. The lattice mismatch of 7.8% between GaAs and GaSb results in high defect densities, which may influence the measurement. We investigated an alternative approach for Hall effect measurements using a p-n junction for the electrical isolation of the test layer from layers below. This allows antimonide based test layers with low defect density grown lattice-matched on GaSb substrates to be analyzed. Negligible leakage currents across the p-n junctions are key to ensure significant measurement results. n- and p-GaSb layers show similar carrier concentration if grown on GaSb or semi-insulating GaAs, with the exception of highly n-doped layers >5 x 1017 cm−3. However, majority carrier mobilities were systematically higher on GaSb substrate, explained by a lower density of structural defects. Furthermore, the sample design with p-n junction enabled Hall effect measurements of quaternary p-Al0.2Ga0.8As0.02Sb0.98 layers, which was impossible for those same layers grown on GaAs due to strain induced phase-separation. The methodology is presented for antimonides, but it is applicable to a wide range of material systems including metamorphic structures.

Keywords: gasb; epitaxial gasb; semi insulating; hall characterization; characterization epitaxial; gasb substrates

Journal Title: Journal of Crystal Growth
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.