LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Umbilical cord-derived mesenchymal stromal cell-conditioned medium exerts in vitro antiaging effects in human fibroblasts.

Photo from archive.org

BACKGROUND AIMS Chronic wounds are a common complication of diabetes. Fibroblast-myofibroblast differentiation is important for wound repair, which is commonly impaired in non-healing wounds, and the underlying mechanisms need to… Click to show full abstract

BACKGROUND AIMS Chronic wounds are a common complication of diabetes. Fibroblast-myofibroblast differentiation is important for wound repair, which is commonly impaired in non-healing wounds, and the underlying mechanisms need to be further elucidated. METHODS We used high glucose (HG) to simulated the diabetes microenvironment and explored its effects on the biological features of fibroblasts in vitro. RESULTS The results showed that prolonged HG induced senescence in fibroblasts through activation of p21 and p16 in a reactive oxygen species (ROS)-dependent manner, further delayed the viability and migration in fibroblasts and also depressed fibroblast differentiation through the TGF-β/Smad signaling pathway. However, mesenchymal stromal cell-conditioned medium (MSC-CM) counteracts the effects of HG. Treatment of fibroblasts with MSC-CM decreased HG-induced ROS overproduction, ameliorated HG-induced senescence in fibroblasts and reversed the defects in myofibroblast formation. Our results may provide clues for the pathogenesis of chronic wounds and a theoretical basis to develop MSC-CM as an alternative therapeutic method to treatment of chronic wounds.

Keywords: stromal cell; conditioned medium; mesenchymal stromal; cell conditioned

Journal Title: Cytotherapy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.