LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Porcine acellular dermal matrix accelerates wound healing through miR-124-3p.1 and miR-139-5p.

Photo from wikipedia

BACKGROUND AIMS Cutaneous wound management is a major health problem and imposes a huge economic burden worldwide. Previous studies have demonstrated that wound healing is a highly coordinated process including… Click to show full abstract

BACKGROUND AIMS Cutaneous wound management is a major health problem and imposes a huge economic burden worldwide. Previous studies have demonstrated that wound healing is a highly coordinated process including epithelialization, angiogenesis, remodeling and scarring. This progression requires self-renewal, preservation and repair properties of stem cells. However, our understanding of the detailed internal regulatory mechanism following injury and the means to accelerate wound healing are limited. METHODS Our previous research revealed that porcine acellular dermal matrix (ADM) effectively promotes wound healing and scar formation through epidermal stem cells (ESCs), and this process is relevant to the alteration of internal miRNA levels. In this study, we investigated the regulatory function of porcine ADM treatment on miRNAs in ESCs. RESULTS We report that the treatment of porcine ADM reduced the levels of miR-124-3p.1 and miR-139-5p in wounds. MiR-124-3p.1 and miR-139-5p inhibited the expression of JAG1 and Notch1, respectively, by directly targeting miRNAs in ESCs. CONCLUSIONS This work demonstrates that porcine ADM induced down-regulation of miR-124-3p.1/139-5p in wounds and up-regulation of JAG1/Notch1 in ESCs, thus enhancing cutaneous wound healing.

Keywords: wound healing; mir 139; 124 mir; porcine; mir 124

Journal Title: Cytotherapy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.