BACKGROUND AIMS Mesenchymal stromal cells (MSCs) provide minor salivary glands (MSGs) with support and niche cells for epithelial glandular tissue. Little is known about resident MSG-derived MSCs (MSG-MSCs) in primary… Click to show full abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) provide minor salivary glands (MSGs) with support and niche cells for epithelial glandular tissue. Little is known about resident MSG-derived MSCs (MSG-MSCs) in primary Sjӧgren's syndrome (PSS). The authors' objective is to define the immunobiology of endogenous PSS MSG-MSCs. METHODS Using culture-adapted MSG-MSCs isolated from consenting PSS subjects (n = 13), the authors performed in vitro interrogation of PSS MSG-MSC immunobiology and global gene expression compared with controls. To this end, the authors performed phenotypic and immune functional analysis of indoleamine 2,3-dioxygenase (IDO), programmed death ligand 1 (PD-L1) and intercellular adhesion marker 1 (ICAM-1) before and after interferon γ (IFNγ) licensing as well as the effect of MSG-MSCs on T-cell proliferation. Considering the female predominance of PSS, the authors also addressed the influence of 17-β-estradiol on estrogen receptor α-positive-related MSC function. RESULTS The authors found that MSG-MSCs deployed normal immune regulatory functionality after IFNγ stimulation, as demonstrated by increased protein-level expression of IDO, PD-L1 and ICAM-1. The authors also found that MSG-MSCs suppressed T-cell proliferation in a dose-dependent manner independent of 17-β-estradiol exposure. Gene ontology and pathway analysis highlighted extracellular matrix deposition as a possible difference between PSS and control MSG-MSCs. MSG-MSCs demonstrated increased α-smooth muscle actin expression in PSS, indicating a partial myofibroblast-like adaptation. CONCLUSIONS These findings establish similar immune regulatory function of MSG-MSCs in both PSS and control patients, precluding intrinsic MSC immune regulatory defects in PSS. PSS MSG-MSCs show a partial imprinted myofibroblast-like phenotype that may arise in the setting of chronic inflammation, providing a plausible etiology for PSS-related glandular fibrosis.
               
Click one of the above tabs to view related content.