We report the development of dual stimuli-responsive nanoparticles with potential for anticancer therapy. The nanoparticles are composed of a conjugated polymer (polypyrrole, PPY) loaded with an anticancer drug (allicin), and… Click to show full abstract
We report the development of dual stimuli-responsive nanoparticles with potential for anticancer therapy. The nanoparticles are composed of a conjugated polymer (polypyrrole, PPY) loaded with an anticancer drug (allicin), and were characterized by a variety of physicochemical techniques. The dual stimuli-responsive nature of the PPY nanoparticles was validated in vitro: the PPY nanoparticles delivered an anticancer drug (allicin) in response to exposure to an electric field in vitro as demonstrated with UV–vis spectroscopy; and the PPY nanoparticles exhibited photothermal activity upon irradiation with near infrared light which resulted in resulted in toxicity towards HEP G2 cells in vitro. We believe that such nanoparticles have long term potential for application in cancer therapy in a variety of tissue niches (e.g. breast cancer, liver cancer, lung cancer, skin cancer).
               
Click one of the above tabs to view related content.