Abstract We study the feedback stabilization of the Boussinesq system in a two dimensional domain, with mixed boundary conditions. After ascertaining the precise loss of regularity of the solution in… Click to show full abstract
Abstract We study the feedback stabilization of the Boussinesq system in a two dimensional domain, with mixed boundary conditions. After ascertaining the precise loss of regularity of the solution in such models, we prove first Green's formulas for functions belonging to weighted Sobolev spaces and then correctly define the underlying control system. This provides a rigorous mathematical framework for models studied in the engineering literature. We prove the stabilizability by extending to the linearized Boussinesq system a local Carleman estimate already established for the Oseen system. Then we determine a feedback control law able to stabilize the linearized system around the stationary solution, with any prescribed exponential decay rate, and able to stabilize locally the nonlinear system.
               
Click one of the above tabs to view related content.