LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Γ-limit of traveling waves in the FitzHugh-Nagumo system

Photo from wikipedia

Abstract Patterns and waves are basic and important phenomena that govern the dynamics of physical and biological systems. A common theme in investigating such systems is to identify the intrinsic… Click to show full abstract

Abstract Patterns and waves are basic and important phenomena that govern the dynamics of physical and biological systems. A common theme in investigating such systems is to identify the intrinsic factors responsible for such self-organization. The Γ-convergence is a well-known technique applicable to variational formulations of concentration phenomena of stable patterns. Recently a geometric variational functional associated with the Γ-limit of standing waves of the FitzHugh-Nagumo system has been built. This article studies the Γ-limit of traveling waves. To the best of our knowledge, this is the first attempt to expand the scope of applicability of Γ-convergence to cover non-stationary problems.

Keywords: nagumo system; limit traveling; traveling waves; fitzhugh nagumo; waves fitzhugh

Journal Title: Journal of Differential Equations
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.