Abstract Consider a single hyperbolic PDE u x y = f ( x , y , u , u x , u y ) , with locally prescribed data: u… Click to show full abstract
Abstract Consider a single hyperbolic PDE u x y = f ( x , y , u , u x , u y ) , with locally prescribed data: u along a non-characteristic curve M and u x along a non-characteristic curve N. We assume that M and N are graphs of one-to-one functions, intersecting only at the origin, and located in the first quadrant of the ( x , y ) -plane. It is known that if M is located above N, then there is a unique local solution, obtainable by successive approximation. We show that in the opposite case, when M lies below N, the uniqueness can fail in the following strong sense: for the same boundary data, there are two solutions that differ at points arbitrarily close to the origin. In the latter case, we also establish existence of a local solution (under a Lipschitz condition on the function f). The construction, via Picard iteration, makes use of a careful choice of additional u-data which are updated in each iteration step.
               
Click one of the above tabs to view related content.