Abstract We show that the Stokes operator defined on L σ p ( Ω ) for an exterior Lipschitz domain Ω ⊂ R n ( n ≥ 3 ) admits… Click to show full abstract
Abstract We show that the Stokes operator defined on L σ p ( Ω ) for an exterior Lipschitz domain Ω ⊂ R n ( n ≥ 3 ) admits maximal regularity provided that p satisfies | 1 / p − 1 / 2 | 1 / ( 2 n ) + e for some e > 0 . In particular, we prove that the negative of the Stokes operator generates a bounded analytic semigroup on L σ p ( Ω ) for such p. In addition, L p - L q -mapping properties of the Stokes semigroup and its gradient with optimal decay estimates are obtained. This enables us to prove the existence of mild solutions to the Navier–Stokes equations in the critical space L ∞ ( 0 , T ; L σ 3 ( Ω ) ) (locally in time and globally in time for small initial data).
               
Click one of the above tabs to view related content.