We extend the classical boundary values \begin{align*} & g(a) = - W(u_{a}(\lambda_0,.), g)(a) = \lim_{x \downarrow a} \frac{g(x)}{\hat u_{a}(\lambda_0,x)}, \\ &g^{[1]}(a) = (p g')(a) = W(\hat u_{a}(\lambda_0,.), g)(a) = \lim_{x… Click to show full abstract
We extend the classical boundary values \begin{align*} & g(a) = - W(u_{a}(\lambda_0,.), g)(a) = \lim_{x \downarrow a} \frac{g(x)}{\hat u_{a}(\lambda_0,x)}, \\ &g^{[1]}(a) = (p g')(a) = W(\hat u_{a}(\lambda_0,.), g)(a) = \lim_{x \downarrow a} \frac{g(x) - g(a) \hat u_{a}(\lambda_0,x)}{u_{a}(\lambda_0,x)} \end{align*} for regular Sturm-Liouville operators associated with differential expressions of the type $\tau = r(x)^{-1}[-(d/dx)p(x)(d/dx) + q(x)]$ for a.e. $x\in[a,b] \subset \mathbb{R}$, to the case where $\tau$ is singular on $(a,b) \subseteq \mathbb{R}$ and the associated minimal operator $T_{min}$ is bounded from below. Here $u_a(\lambda_0, \cdot)$ and $\hat u_a(\lambda_0, \cdot)$ denote suitably normalized principal and nonprincipal solutions of $\tau u = \lambda_0 u$ for appropriate $\lambda_0 \in \mathbb{R}$, respectively. We briefly discuss the singular Weyl-Titchmarsh-Kodaira $m$-function and finally illustrate the theory in some detail with the examples of the Bessel, Legendre, and Kummer (resp., Laguerre) operators.
               
Click one of the above tabs to view related content.