LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The existence of solutions for nonlinear elliptic equations: Simple proofs and extensions of a paper by Y. Shi

Photo by brandi1 from unsplash

The paper [Shi19] uses the Craig-Wayne-Bourgain method to construct solutions of an elliptic problem involving parameters. The results of [Shi19] include regularity assumptions on the perturbation and involve excluding parameters.… Click to show full abstract

The paper [Shi19] uses the Craig-Wayne-Bourgain method to construct solutions of an elliptic problem involving parameters. The results of [Shi19] include regularity assumptions on the perturbation and involve excluding parameters. The paper [Shi19] also constructs response solutions to a quasi-periodically perturbed (ill-posed evolution) problem. In this paper, we use several classical methods (freezing of coefficients, alternative methods for nonlinear elliptic equations) to extend the results of [Shi19]. We weaken the regularity assumptions on the perturbation and we describe the phenomena that happens for all parameters. In the ill-posed problem, we use a recently developed time-dependent center manifold theorem which allows to reduce the problem to a finite-dimensional ODE with quasiperiodic dependence on time. The bounded and sufficiently small solutions of these ODE give solutions of the ill-posed PDE.

Keywords: paper; ill posed; problem; elliptic equations; nonlinear elliptic; existence solutions

Journal Title: Journal of Differential Equations
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.