BACKGROUND Hyaluronic acid (HA) is an important factor in skin hydration maintenance. In mammalian keratinocytes, hyaluronan synthase 2 (HAS2) is a critical enzyme in HA production. Therefore, the promotion of… Click to show full abstract
BACKGROUND Hyaluronic acid (HA) is an important factor in skin hydration maintenance. In mammalian keratinocytes, hyaluronan synthase 2 (HAS2) is a critical enzyme in HA production. Therefore, the promotion of HAS2 expression in keratinocytes may be a strategy for maintaining skin moisture. OBJECTIVE The aim was to determine the skin hydration effect and regulatory mechanisms of 3,6-anhydro-L-galactose (L-AHG), a main component of red macroalgal carbohydrates in human keratinocytes. METHODS L-AHG was applied to an immortalized human epidermal keratinocyte cell line (HaCaT cells). HA production, HAS2 protein and mRNA levels, and the activation of the signaling pathways involved in HAS2 expression were measured. HA levels were also evaluated for three dimensional (3D) reconstructed human skin. RESULTS Our results suggest that L-AHG upregulates HA production and may enhance HAS2 expression by activating EGFR-mediated ERK, PI3K/Akt, and STAT3 signaling pathways. We confirmed that L-AHG activated the AMPKα signaling pathway which in turn could regulate HAS2 expression in HaCaT cells. The effects of L-AHG on HA production were observed in the 3D reconstructed human skin model. CONCLUSION Our results suggest that L-AHG may enhance skin moisture retention by increasing HA synthesis in human epidermal keratinocytes.
               
Click one of the above tabs to view related content.