Abstract In this study, pine bark-derived biochar was modified with melamine, urea, ammonium chloride, and ammonium nitrate to synthesize nitrogen-doped biochars. The effect of chemical modification on the extent of… Click to show full abstract
Abstract In this study, pine bark-derived biochar was modified with melamine, urea, ammonium chloride, and ammonium nitrate to synthesize nitrogen-doped biochars. The effect of chemical modification on the extent of N-doping and surface properties were investigated. The elemental analysis suggested that melamine modified biochar samples had 4.75% nitrogen, higher than nitrogen in other modified biochars. The surface morphology and surface profile were studied with scanning electron microscopy and confocal laser scanning microscopy. X-ray photoelectron spectra showed that N-doped samples' surface nitrogen content increased to 8.3%, 3.9%, 2.3%, and 2.9% for melamine, ammonium chloride, ammonium nitrate, and urea, respectively. X-ray photoelectron spectroscopy results also revealed that among the nitrogen fractions in the N-doped biochars, melamine modified biochar has the highest percentage of pyrrolic and pyridinic nitrogen (35.2% and 36.8%, respectively) compared to others. Urea modified biochar had the highest percentage of graphitic nitrogen (26.6%). Our results suggest that application-specific nitrogen-enriched biochar can be prepared by understanding how different nitrogen precursors interact with carbon surfaces.
               
Click one of the above tabs to view related content.