LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Remediation of water from per-/poly-fluoroalkyl substances (PFAS) – Challenges and perspectives

Photo from wikipedia

Abstract Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as additives to either enhance the thermo-chemical stability of products or alter the properties of surfaces. PFAS are… Click to show full abstract

Abstract Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as additives to either enhance the thermo-chemical stability of products or alter the properties of surfaces. PFAS are amphiphilic molecules, composed of fluoro-alkyl chains terminated by specialized functional groups such as carboxylic, sulphonic acids, phosphates, sulphonamides, and betaines; offering surfactant-like behavior, and making them highly persistent and mobile across all environmental compartments. The treatment of PFAS contaminated water remains very complex due to the typically low concentrations and because of the complexity of the wastewater matrix in which PFAS are present. Exposure to trace amounts of PFAS can cause severe health impacts across all life forms. Trains of treatment or removal techniques must be employed to achieve higher removal rates. This review assesses existing methods for PFAS capture, concentration, and degradation from wastewaters. The performance and selectivity, as well as scalability and cost-effectiveness, of these techniques are critically compared while operating limitations, as well as emerging solutions, are presented to evaluate the combinatorial benefits of tandem operations for successful PFAS remediation. The discussion is then focused on prospects for more cost-effective and scalable PFAS remediation solutions enabling the treatment of dilute and complex water matrices, required to deal with these extremely persistent pollutants.

Keywords: poly fluoroalkyl; fluoroalkyl substances; remediation; water; substances pfas; per poly

Journal Title: Journal of environmental chemical engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.