LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes

In recent years, development of high-performance supercapacitor electrode materials has stimulated a great deal of scientific research. The electrochemical performance of a supercapacitor strongly depends on its material structures. Herein,… Click to show full abstract

In recent years, development of high-performance supercapacitor electrode materials has stimulated a great deal of scientific research. The electrochemical performance of a supercapacitor strongly depends on its material structures. Herein, we report a simple strategy for high-performance supercapacitors by building pseudocapacitive CuS nanospheres with nanoporous structures, nanosized walls (<10 nm) and relatively large specific surface area of 65 m2/g. This electrode demonstrates excellent electrochemical performance including a maximum specific capacitance of 814 F/g at 1 A/g, significant rate capability of 42% capacitance retention at an ultrafast rate of 50 A/g, and outstanding long-term cycling stability at various current densities. The remarkable electrochemical performance of as-prepared nanoporous CuS nanospheres electrode has been attributed to its unique structures that plays a key role in providing short ion and electron diffusion pathways, facilitated ion transport and more active sites for electrochemical reactions. This work sheds a new light on the metal sulfides design philosophy, and demonstrates that nanoporous CuS nanospheres electrode is a promising candidate for application in high-performance supercapacitors.

Keywords: cus nanospheres; nanoporous cus; performance; performance supercapacitor; high performance

Journal Title: Journal of Energy Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.