Abstract The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hydrothermal approach… Click to show full abstract
Abstract The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hydrothermal approach is demonstrated for the controllable synthesis of Ag-rich Ag9Pd1 alloy nanoactiniae with obviously enhanced electro-catalytic activity (2.23 mA cm−2 at 0.85 V) and stability for oxygen reduction reaction. In alkaline solution, the ORR onset potential and half-wave potential of the Ag9Pd1 alloy nanoactiniae can reach a value of 1.02 V and 0.89 V, respectively, which origin from strong ligand and ensemble effects between Pd element and Ag element. The nanocrystals are uniformly alloyed, displaying a Ag9Pd1 combination, as displayed by an assembly of X-ray diffraction (XRD) spectrum, energy dispersive X-ray (EDX) analysis, and cyclic voltammetry (CV). This concept of tuning bimetallic alloy nanocrystals with low concentrations of more precious metal may be a promising approach to be applicable to a wide range of alloy nanocrystals.
               
Click one of the above tabs to view related content.