LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ti, Zn co-doped hematite photoanode for solar driven photoelectrochemical water oxidation

Photo by a2eorigins from unsplash

Abstract Although there have been many reports of metal doping to ameliorate the drawbacks of hematite as the photoanode for water oxidation, most of them focused on monometallic doping, and… Click to show full abstract

Abstract Although there have been many reports of metal doping to ameliorate the drawbacks of hematite as the photoanode for water oxidation, most of them focused on monometallic doping, and only a few of them payed attention to bimetallic doping. What is worse, the synergetic mechanism between two metal dopants was not sufficiently studied, especially the density functional theory (DFT) calculation. In this work, the n-type hematite was synthesized by introducing Ti dopant into hematite through the hydrothermal method, and dipping-sintering treatment was employed to further introduce homogeneously dispersed Zn dopant into that, forming the Ti, Zn co-doped hematite. Under the optimal condition, Ti-doped hematite photoanode reached approximately 2-times enhancement of the photocurrent density compared with the pristine one at 1.23 V vs. RHE, while Ti, Zn co-doped hematite anode obtained another 25% elevation. UV–Vis spectroscopy, Mott–Schottky plots, EIS analysis, photo-oxidation of hole scavenger (H2O2), and DFT calculation were employed to understand the role of Ti, Zn dopant. Based on the obtained results, the synergetic mechanism of two dopants was discussed, i.e., the improvement of PEC performance of Ti, Zn co-doped hematite photoanode was possibly attributed to greater carrier density and improved charge separation efficiency at the surface of hematite. This work provides new strategy and understanding of the improvement of PEC performance of hematite by doping engineering.

Keywords: hematite photoanode; doped hematite; water oxidation

Journal Title: Journal of Energy Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.