LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistic effect of size-dependent PtZn nanoparticles and zinc single-atom sites for electrochemical ozone production in neutral media

Photo from wikipedia

Abstract Electrochemical ozone production (EOP) via water electrolysis represents an attractive method for the generation of high-purity O3. Herein, the X-PtZn/Zn-N-C electrocatalysts show a strong structural sensitive behavior depends on… Click to show full abstract

Abstract Electrochemical ozone production (EOP) via water electrolysis represents an attractive method for the generation of high-purity O3. Herein, the X-PtZn/Zn-N-C electrocatalysts show a strong structural sensitive behavior depends on the size of the PtZn nanoparticles and their EOP activity exhibits a volcano-type dependence for the O3 performance in neutral media. The 7.7-PtZn/Zn-N-C exhibits EOP current efficiency of 4.2%, and shows the prominent performance in the production of gaseous O3 with a value of 1647 ppb at 30 min, which is almost 4-fold compared to 2.2-PtZn/Zn-N-C. Based on the experiments and theoretical calculations, the performance of the EOP process was determined by the nanoparticle size-effect and the synergistic effect between the PtZn nanoparticles and atomically dispersed Zn-N-C. Furthermore, the five-membered cyclic structure of O3 can be stabilized between the PtZn nanoparticle and the Zn-N-C support, indicating that O3 is produced at the interface.

Keywords: ozone production; electrochemical ozone; production; effect; size; ptzn nanoparticles

Journal Title: Journal of Energy Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.