LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solving dynamic discrete choice models using smoothing and sieve methods

Photo from wikipedia

We propose to combine smoothing, simulations and sieve approximations to solve for either the integrated or expected value function in a general class of dynamic discrete choice (DDC) models. We… Click to show full abstract

We propose to combine smoothing, simulations and sieve approximations to solve for either the integrated or expected value function in a general class of dynamic discrete choice (DDC) models. We use importance sampling to approximate the Bellman operators defining the two functions. The random Bellman operators, and therefore also the corresponding solutions, are generally non-smooth which is undesirable. To circumvent this issue, we introduce a smoothed version of the random Bellman operator and solve for the corresponding smoothed value function using sieve methods. We show that one can avoid using sieves by generalizing and adapting the `self-approximating' method of Rust (1997) to our setting. We provide an asymptotic theory for the approximate solutions and show that they converge with root-N-rate, where $N$ is number of Monte Carlo draws, towards Gaussian processes. We examine their performance in practice through a set of numerical experiments and find that both methods perform well with the sieve method being particularly attractive in terms of computational speed and accuracy.

Keywords: sieve methods; solving dynamic; choice models; dynamic discrete; discrete choice

Journal Title: Journal of Econometrics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.