LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sample selection models with monotone control functions

Photo from wikipedia

Abstract The celebrated Heckman selection model yields a selection correction function (control function) proportional to the inverse Mills ratio, which is monotone. This paper studies a sample selection model that… Click to show full abstract

Abstract The celebrated Heckman selection model yields a selection correction function (control function) proportional to the inverse Mills ratio, which is monotone. This paper studies a sample selection model that does not impose parametric distributional assumptions on the latent error terms, while maintaining the monotonicity of the control function. We show that a positive (negative) dependence condition on the latent error terms is sufficient for the monotonicity of the control function. The condition is equivalent to a restriction on the copula function of latent error terms. Using the monotonicity, we propose a tuning-parameter-free semiparametric estimation method and establish root n -consistency and asymptotic normality for the estimates of finite-dimensional parameters. A new test for selectivity is also developed in the presence of the shape restriction. Simulations and an empirical application are conducted to illustrate the usefulness of the proposed methods.

Keywords: control; latent error; selection; sample selection; control function

Journal Title: Journal of Econometrics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.