LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-dimensional test for alpha in linear factor pricing models with sparse alternatives

Abstract We consider the problem of testing for the presence of alpha in Linear Factor Pricing Models. We propose a novel test of the max-of-squares type, which is designed to… Click to show full abstract

Abstract We consider the problem of testing for the presence of alpha in Linear Factor Pricing Models. We propose a novel test of the max-of-squares type, which is designed to deal with the high dimensionality of the securities and the sparse alternatives. We rigorously show that the proposed test has attractive theoretical properties and demonstrate its superior performance via Monte Carlo experiments. These results are established when the number of securities is larger than the time dimension of the return series, and the alternative hypothesis is sparse, i.e. the alpha vector is sparse. As a general alternative, we suggest to combine the max-of-squares type test and a sum-of-squares type test, to benefit from the power advantages of both tests. We apply the two proposed tests to the monthly returns on securities in the Chinese and the U.S. stock markets, respectively under the Fama–French three-factor model, and confirm the usefulness of the proposed tests in detecting the presence of alpha.

Keywords: factor pricing; alpha linear; test; linear factor; alpha

Journal Title: Journal of Econometrics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.