LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Voltammetric sensing of fenitrothion in natural water and orange juice samples using a single-walled carbon nanohorns and zein modified sensor

Photo from wikipedia

Abstract A glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNH) and zein (ZE), a prolamin type-protein find in maize, for the differential pulse adsorptive cathodic stripping voltammetric determination… Click to show full abstract

Abstract A glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNH) and zein (ZE), a prolamin type-protein find in maize, for the differential pulse adsorptive cathodic stripping voltammetric determination of fenitrothion (FT) is proposed. The proposed film was characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Regarding the electrochemical characterization, comparing the results obtained by cyclic voltammetry and electrochemical impedance spectroscopy, the modified electrode (SWCNH-ZE/GCE) showed an electroactive surface area 3 times higher and faster electron transfer kinetic than bare GCE. By using differential pulse adsorptive cathodic stripping voltammetry and SWCNH-ZE/GCE the analytical curve exhibited a linear response ranging of 9.9 × 10−7 to 1.2 × 10−5 mol L−1, with a limit of detection of 1.2 × 10−8 mol L−1. The proposed sensor was successfully applied for the determination of FT pesticide in natural water and orange juice samples. Moreover, the electrochemical sensor showed good repeatability and reproducibility arising from the excellent film stability, suggesting that the proposed architecture has broad potential for applications in sensing and biosensing.

Keywords: spectroscopy; single walled; carbon nanohorns; carbon; sensor; walled carbon

Journal Title: Journal of Electroanalytical Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.