LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher supercapacitor performance

Abstract In this study, copper oxide (CuO) thin films were synthesized at different deposition temperatures on fluorine doped tin oxide coated glass (FTO) substrates by spray pyrolysis for supercapacitor applications.… Click to show full abstract

Abstract In this study, copper oxide (CuO) thin films were synthesized at different deposition temperatures on fluorine doped tin oxide coated glass (FTO) substrates by spray pyrolysis for supercapacitor applications. The physical and electrochemical properties of the as-synthesized CuO samples were characterized via different analytical techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy, scanning electron (SEM) microscopy, surface wettability tests, and electrochemical measurements. The results showed that the deposition temperature affected their structural, morphological, and supercapacitor properties. The higher specific capacitance and extensive charge/discharge capability of the nanoparticle-like CuO thin films demonstrated their suitability as outstanding candidates in electrochemical applications. The evaluated specific capacitance further confirmed the effect of the deposition temperature on the supercapacitor performance of the CuO electrodes; its values for the thin films synthesized at 300, 350, and 400 °C were 363, 691, and 487 F g−1, respectively, at a scan rate of 5 mV s−1 in a 2 M Na2SO4 aqueous electrolyte. Hence, this study demonstrates that the surface morphology and electrochemical supercapacitive properties of materials are dependent on the deposition temperature of CuO thin films.

Keywords: synthesized cuo; thin films; spray pyrolysis; deposition; supercapacitor

Journal Title: Journal of Electroanalytical Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.