LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gold nanoparticles/electrochemically expanded graphite composite: A bifunctional platform toward glucose sensing and SERS applications

Photo from archive.org

Abstract An integrated nanogold/expanded graphite based sensor was fabricated by a former electrochemical etching of the pencil lead electrode (PLE) and a later in-situ deposition of gold nanoparticles (AuNPs). The… Click to show full abstract

Abstract An integrated nanogold/expanded graphite based sensor was fabricated by a former electrochemical etching of the pencil lead electrode (PLE) and a later in-situ deposition of gold nanoparticles (AuNPs). The electrochemical pretreatment of PLE (EPLE) created a 3D graphene-like surface, enhanced the electrode surface area and facilitated the electron transfer ability within 5 min without any hazardous chemicals added. The obtained AuNPs/EPLE sensor had an excellent electrochemical response to glucose with a wide linear concentration range, from 0.05 to 38 mM and 38 to 60 mM, and a low detection limit of 5 μM (S/N = 3). Furthermore, the AuNPs/EPLE sensor was successfully employed to detect the glucose in human serum samples, and the results agreed well with those measured in hospital. Finally, the sensor exhibited efficient and reproducible surface-enhanced Raman scattering activities for the probe molecules.

Keywords: gold nanoparticles; expanded graphite; composite bifunctional; nanoparticles electrochemically; graphite composite; electrochemically expanded

Journal Title: Journal of Electroanalytical Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.