LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

UV/VIS spectroelectrochemistry with 3D printed electrodes

Photo from archive.org

Abstract Recent years have witnessed a boom in applying 3D printing technologies to manufacture customized prototypes in various fields of science. In electrochemistry, fused deposition modelling (FDM) 3D printing employing… Click to show full abstract

Abstract Recent years have witnessed a boom in applying 3D printing technologies to manufacture customized prototypes in various fields of science. In electrochemistry, fused deposition modelling (FDM) 3D printing employing composite filaments based on thermoplastic materials and conductive allotropes of carbon enabled rapid, routine, inexpensive and operationally safe fabrication of conductive electrodes. Nevertheless, results of cyclovoltammetric measurements reported in the literature indicate that 3D printed electrodes give rise to considerable intrinsic kinetic barriers for electron transfer through the electrode/electrolyte interface. In this work we employ FDM-based 3D printing followed by a simple anodic activation procedure to manufacture electrodes from commercially available composites of polylactic acid (PLA) and carbon nanotubes (CNTs). Employing cyclic voltammetry with ruthenium(III) acetylacetonate as the electroactive probe we demonstrate that the previously reported kinetic barrier is almost completely removed upon the activation process. We apply such devised procedure to manufacture electrodes with optical windows allowing UV/VIS absorption spectroscopic detection of electrogenerated products. We are thus the first to perform a UV/VIS absorption spectroelectrochemical experiment employing 3D printed optically transparent working electrodes.

Keywords: spectroelectrochemistry printed; vis spectroelectrochemistry; chemistry; printing; printed electrodes; electrochemistry

Journal Title: Journal of Electroanalytical Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.