LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pinus nigra pine derived hierarchical carbon foam for high performance supercapacitors

Photo from wikipedia

Abstract Biomass comprises an attractive source of carbon materials for energy conversion and storage applications, because it provides a low cost and sustainable approach for the production of carbon-based electrode… Click to show full abstract

Abstract Biomass comprises an attractive source of carbon materials for energy conversion and storage applications, because it provides a low cost and sustainable approach for the production of carbon-based electrode materials at large scale. Here, we demonstrate the preparation of a three-dimensional and hierarchical carbon foam (3DCF) from bio-renewable Pinus nigra pine, using a chemical degradation method followed by two simple carbonization steps in presence of argon gas. The as-prepared 3DCF in supercapacitor electrode shows high scan rate capability up to 10 V s−1, specific capacitance of 165 F g−1 at the specific current of 3.3 A g−1 in 6 M KOH electrolyte in three-electrode cell configuration, and retains 69.6% of its initial capacitance when the specific current increased to 13.3 A g−1. Furthermore, a 3DCF based symmetrical two-electrode cell has been constructed that shows a satisfactory specific energy of 6.6 Wh kg−1 at specific power of 2.3 kW kg−1, and maintains the specific energy of about 50% at high specific power of 7.3 kW kg−1 under an operating voltage of 1.4 V in 2 M LiClO4 aqueous electrolyte. These results reveal a sustainable and low-cost electrode fabrication at large quantity for fabricating high performance supercapacitors with both KOH and Li-ion based electrolytes.

Keywords: electrode; carbon; pinus nigra; nigra pine; carbon foam; hierarchical carbon

Journal Title: Journal of Electroanalytical Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.