LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physical and electrochemical behavior of black nickel coatings in presence of KNO3 and imidazole additives

Photo from wikipedia

Abstract As a unique type of nickel films, black nickel coatings possess remarkable optical and electrical properties but limited applications owing to their poor structure and corrosion resistance. In this… Click to show full abstract

Abstract As a unique type of nickel films, black nickel coatings possess remarkable optical and electrical properties but limited applications owing to their poor structure and corrosion resistance. In this study, black nickel coatings were electrodeposited on St37 steel and optimized utilizing nickel Watts bath modified with potassium nitrate. By investigating the coating structure and current efficiency (CE), optimum bath was determined as 190 g/L NiSO4, 25 g/L NiCl2, 30 g/L H3BO3, and 25 g/L KNO3 which resulted in CE of 79% and a compact structure. Next, cyclic voltammetry and chronoamperometric tests revealed that the dominant deposition mechanism was instantaneous nucleation. Besides studying the changes in CE and cathodic polarization, the improvement of properties with addition of imidazole was investigated by studying the surface morphology, phase structure, light absorption, and corrosion behavior using SEM, XRD, differential reflectance spectroscopy (DRS), potentiodynamic polarization, and electrochemical impedance spectroscopy tests, respectively. Adding imidazole to the deposition bath reduced the grain size and crack width from micro-scale to nano-scale, without affecting its nucleation mechanism or light absorption property. Also, imidazole enhanced the corrosion resistance of the black nickel coatings by 62% reduction of corrosion current density and increasing its polarization resistance by 58%.

Keywords: spectroscopy; nickel coatings; kno3; structure; corrosion; black nickel

Journal Title: Journal of Electroanalytical Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.