Abstract Electrochemical nitrogen reduction reaction (NRR) is becoming increasingly promising alternatively to the traditional Haber-Bosch process but developing efficient electrocatalysts is still a challenge. In this job, we searched that… Click to show full abstract
Abstract Electrochemical nitrogen reduction reaction (NRR) is becoming increasingly promising alternatively to the traditional Haber-Bosch process but developing efficient electrocatalysts is still a challenge. In this job, we searched that the catalytic performance of Cr2B2 for NRR by way of density functional theory (DFT) calculations. We mainly screened out four favorable N2 adsorbed structures, including N2 adsorption on the B-B bonds, Cr-B bonds, top site of B and Cr atom. It was found that the largest adsorption energy was -1.235 eV when N2 was adsorbed on the Cr-B bond in a side-on structure, and has a better excellent NRR catalytic activity with the limiting potential is 0.29 V. The catalytic activity of all structures was better in the alternating mechanism of nitrogen reduction reaction. As the antibonding orbitals approach the Fermi level, the number of electrons in the antibonding orbitals increases. The limiting potential of TCr_end can also be reduced from 0.88 V to 0.35 V by N-N bond breaking after the second hydrogen, which contribute to the greater NRR performance. We hope that this research will offer a viable strategy for the design of NRR catalysts, and offer a new way of thinking for MBene as a catalyst for NRR.
               
Click one of the above tabs to view related content.