LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Machine learning in the electrocardiogram.

Photo by cokdewisnu from unsplash

The electrocardiogram is the most widely used diagnostic tool that records the electrical activity of the heart and, therefore, its use for identifying markers for early diagnosis and detection is… Click to show full abstract

The electrocardiogram is the most widely used diagnostic tool that records the electrical activity of the heart and, therefore, its use for identifying markers for early diagnosis and detection is of paramount importance. In the last years, the huge increase of electronic health records containing a systematised collection of different type of digitalised medical data, together with new tools to analyse this large amount of data in an efficient way have re-emerged the field of machine learning in healthcare innovation. This review describes the most recent machine learning-based systems applied to the electrocardiogram as well as pros and cons in the use of these techniques. Machine learning, including deep learning, have shown to be powerful tools for aiding clinicians in patient screening and risk stratification tasks. However, they do not provide the physiological basis of classification outcomes. Computational modelling and simulation can help in the interpretation and understanding of key physiologically meaningful ECG biomarkers extracted from machine learning techniques.

Keywords: learning electrocardiogram; machine learning; machine

Journal Title: Journal of electrocardiology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.