BACKGROUND P-wave amplitude (PWA) parameters can be the surrogate measures of the left atrial low-voltage areas (LVAs). METHODS We measured PWAs using an automated system in 50 patients with paroxysmal… Click to show full abstract
BACKGROUND P-wave amplitude (PWA) parameters can be the surrogate measures of the left atrial low-voltage areas (LVAs). METHODS We measured PWAs using an automated system in 50 patients with paroxysmal atrial fibrillation (AF). We examined the relationships between left atrial LVAs and PWA parameters, including P-wave vector magnitude, calculated as the square root of the sum of lead II PWA squared, lead V6 PWA squared, and a one-half lead V2 PWA squared. RESULTS Lead I PWA was most strongly correlated with LVAs in the anterior wall and appendage (anterior wall, R = -0.391, P = 0.006; appendage, R = -0.342, P = 0.016), whereas lead II PWA was most strongly correlated with LVAs in the septum, posterior wall, and bottom wall (septum, R = -0.413, P = 0.003; posterior wall, R = -0.297, P = 0.039; bottom wall; R = -0.288, P = 0.045). Although maximum, minimum, mean, and lead I PWAs were not correlated with total LVA, P-wave vector magnitude and lead II PWA were significantly correlated with total LVA (P-wave vector magnitude, R = -0.430, P = 0.002; lead II PWA, R = -0.323, P = 0.023). P-wave vector magnitude achieved the highest accuracy for predicting significant LVA (total LVA > 10%) with an area under the curve of 0.772; sensitivity, specificity, and positive and negative predictive values were 64%, 88%, 85%, and 69%, respectively, for the cutoff value of 0.130 mV. CONCLUSION P-wave vector magnitude is a useful electrocardiographic predictor of left atrial LVAs.
               
Click one of the above tabs to view related content.