Abstract Calcifying tropical macroalgae produce sediment, build three-dimensional habitats, and provide substrate for invertebrate larvae on reefs. Thus, lower calcification rates under declining pH and increasing ocean pCO2, or ocean… Click to show full abstract
Abstract Calcifying tropical macroalgae produce sediment, build three-dimensional habitats, and provide substrate for invertebrate larvae on reefs. Thus, lower calcification rates under declining pH and increasing ocean pCO2, or ocean acidification, is a concern. In the present study, calcification rates were examined experimentally under predicted end-of-the-century seawater pCO2 (1116 μatm) and pH (7.67) compared to ambient controls (pCO2 409 μatm; pH 8.04). Nine reef macroalgae with diverse calcification locations, calcium carbonate structure, photophysiology, and site-specific irradiance were examined under light and dark conditions. Species included five from a high light patch reef on the Florida Keys Reef Tract (FKRT) and four species from low light reef walls on Little Cayman Island (LCI). Experiments on FKRT and LCI species were conducted at 500 and 50 μmol photons m−2 s−1 in situ irradiance, respectively. Calcification rates independent of photosystem-II (PSII) were also investigated for FKRT species. The most consistent negative effect of elevated pCO2 on calcification rates in the tropical macroalgae examined occurred in the dark. Most species (89%) had net calcification rates of zero or net dissolution in the dark at low pH. Species from the FKRT that sustained positive net calcification rates in the light at low pH also maintained ~30% of their net calcification rates without PSII at ambient pH. However, calcification rates in the light independent of PSII were not sustained at low pH. Regardless of these low pH effects, most FKRT species daily net calcification rates, integrating light/dark rates over a 24h period, were not significantly different between low and ambient pH. This was due to a 10-fold lower dark, compared to light, calcification rate, and a strong correspondence between calcification and photosynthetic rates. Interestingly, low-light species sustained calcification rates on par with high-light species without high rates of photosynthesis. Low-light species' morphology and physiology that promote high calcification rates at ambient pH, may increase their vulnerability to low pH. Our data indicate that the negative effect of elevated pCO2 and low pH on tropical macroalgae at the organismal level is their impact on dark net calcification, probably enhanced dissolution. However, elevated pCO2 and low pH effects on macroalgae daily calcification rates are greatest in species with lower net calcification rates in the light. Thus, macroalgae able to maintain high calcification rates in the light (high and low irradiance) at low pH, and/or sustain strong biotic control with high [H+] in the bulk seawater, are expected to dominate under global change.
               
Click one of the above tabs to view related content.