Bioaugmentation or the addition of microbes to contaminated sites has been widely used to treat contaminated soil or water; however this approach is often limited to laboratory based studies. In… Click to show full abstract
Bioaugmentation or the addition of microbes to contaminated sites has been widely used to treat contaminated soil or water; however this approach is often limited to laboratory based studies. In the present study, large scale bioaugmentation has been applied to total petroleum hydrocarbons (TPH)-contaminated groundwater at a petroleum facility. Initial TPH concentrations of 1564 mg L-1 in the field were reduced to 89 mg L-1 over 32 days. This reduction was accompanied by improved ecotoxicity, as shown by Brassica rapa germination numbers that increased from 52 at day 0 to 82% by the end of the treatment. Metagenomic analysis indicated that there was a shift in the microbial community when compared to the beginning of the treatment. The microbial community was dominated by Proteobacteria and Bacteroidetes from day 0 to day 32, although differences at the genus level were observed. The predominant genera at the beginning of the treatment (day 0 just after inoculation) were Cloacibacterium, Sediminibacterium and Brevundimonas while at the end of the treatment members of Flavobacterium dominated, reaching almost half the population (41%), followed by Pseudomonas (6%) and Limnobacter (5.8%). To the author's knowledge, this is among the first studies to report the successful large scale biodegradation of TPH-contaminated groundwater (18,000 L per treatment session) at an offshore petrochemical facility.
               
Click one of the above tabs to view related content.