Land use change and climate variability have significantly altered the regional water cycle over the last century thereby affecting water security at a local to regional scale. Therefore, it is… Click to show full abstract
Land use change and climate variability have significantly altered the regional water cycle over the last century thereby affecting water security at a local to regional scale. Therefore, it is important to investigate how the climate, land use change, and water demand potentially influence the water security by applying the concept of water footprint. An integrated hydrological modeling framework using SWAT (Soil and Water Assessment Tool) model was developed by considering both anthropogenic (e.g. land use change, water demand) and climatic factors to quantify the spatio-temporal variability of water security indicators such as blue water scarcity, green water scarcity, Falkenmark index, and freshwater provision indicators in Savannah River Basin (SRB). The SRB witnesses a significant change in land use land cover (e.g. forest cover, urban area) as well as water demand (e.g. irrigation, livestock production). Overall our results reveal that, SRB witnessed a significant decrease in blue water due to the climate variability indicating that the precipitation has more control over the blue water resources. Whereas, green water was more sensitive to changes in land use pattern. In addition, the magnitude of various water security indicators are different within each county suggesting that water scarcity are controlled by various factors within a region. An integrated assessment of water footprint, environmental flow, anthropogenic factors, and climatic variables can provide useful information on the rising (how and where) of water related risk to human and ecological health.
               
Click one of the above tabs to view related content.