LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and application of Zn/Ce bimetallic oxides for the decontamination of arsenite (As-III) ions from aqueous solutions.

Photo from archive.org

Arsenic contamination has threatened water safety due to its high toxicity and carcinogenicity. Therefore, it is urgent and significant to develop simple and effective approach for dearsenification of drinking water.… Click to show full abstract

Arsenic contamination has threatened water safety due to its high toxicity and carcinogenicity. Therefore, it is urgent and significant to develop simple and effective approach for dearsenification of drinking water. In present study, Zn/Ce bimetallic oxide particles of various atomic ratios were synthesized by sol-gel process and were applied for adsorption of arsenite from aqueous solutions. The Zn/Ce bimetallic oxide of atomic ratio Zn0.2:Ce0.05 shows better adsorption proficiency in comparison to their monometallic counterparts as well as synthesized bimetal oxides of other atomic ratios. Sorption behavior of arsenite on Zn/Ce bimetal oxide was investigated through batch experiments and optimum conditions were found to be pH = 7.5, adsorbent dose = 0.36 g/L, and contact time = 30 min. The arsenite adsorption data was explained by Langmuir isotherm model and maximum adsorption capacity found to reaching 88.49 mg/g at 318 K. Adsorption mechanism was interpreted using FTIR and XPS data, the former suggesting formation of bond between As(III)Zn/Ce oxide nanoparticles while, latter reveals presence of both As(III) and As(V) peak which further infer that some fraction of As(III) may be get oxidized to As(V) by O2 based on Ce3+ as electron mediation agent between As(III) and O2.

Keywords: adsorption; oxides decontamination; application bimetallic; aqueous solutions; bimetallic oxides; synthesis application

Journal Title: Journal of environmental management
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.