LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Do odour impact criteria of different jurisdictions ensure analogous separation distances for an equivalent level of protection?

Photo from wikipedia

Governments are increasingly introducing odour impact criteria (OIC) to determine separation distances between odour sources and residential areas. Previous studies have shown the wide range of OIC available for this… Click to show full abstract

Governments are increasingly introducing odour impact criteria (OIC) to determine separation distances between odour sources and residential areas. Previous studies have shown the wide range of OIC available for this purpose, depending on the desired level of protection against odour annoyance. However, it is unclear whether OIC with similar levels of protection can ensure analogous separation distances, which would reasonably be expected. This study presents a comparative analysis of separation distances calculated at two sites for different OIC, but all related to an equivalent level of protection. Here, the equivalent level of protection was defined for urban residential areas (land use), swine odour (hedonic tone) and new facilities (facility type). In this manner, the regulatory criteria currently enforced in Germany, Ireland, and Queensland (Australia) were selected as references for the investigation. The results clearly show that, even for an equivalent level of protection, disparate separation distances can be obtained. Differences in separation distances were found to be greater in prevailing wind directions compared to distances in additional wind directions. Overall, the results demonstrate a risk of poor conclusions in odour assessments. This means that care must be taken when adopting OIC for decision making, principally in those countries that have not yet established specific regulations to manage environmental odours. Concomitantly, the results stress the need for better harmonisation of the concept of the odour impact criterion and components thereof. By using perturbation analysis, it has also been found that the stack exit temperature influences the separation distances in a distinct way, reliant on the criteria used to determine the distances. This finding is of significance for input data collection in future odour modelling studies. Furthermore, approaches used to derive OIC, equivalence between dispersion modelling and field inspections (European standard EN 16841-1), as well as implications of the findings for regulatory practice are summarised and discussed.

Keywords: equivalent level; separation; level protection; separation distances

Journal Title: Journal of environmental management
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.